Discriminative Training for Neural Predictive Coding Applied to Speech Features Extraction

نویسنده

  • M. CHETOUANI
چکیده

In this paper, we present a predictive neural network called Neural Predictive Coding (NPC). This model is used for non linear discriminant features extraction (DFE) applied to phoneme recognition. We validate the nonlinear prediction improvement of the NPC model. We also, present a new extension of the NPC model : NPC-3. In order to evaluate the performances of the NPC-3 model, we carried out a study of Darpa-Timit phonemes (in particular /b/, /d/, /g/ and /p/, /t/, /q/ phonemes) recognition. Comparisons with traditionnal coding methods are presented: they put in obsviousness an improvement of the classification. We also show how an adaptative constraint allows improvements on recognition task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural predictive coding for speech discriminant feature extraction: The DFE-NPC

In this paper, we present a predictive neural network called Neural Predictive Coding (NPC). This model is used for non linear discriminant features extraction (DFE) applied to phoneme recognition. We also, present a new extension of the NPC model : DFE-NPC. In order to evaluate the performances of the DFE-NPC model, we carried out a study of Darpa-Timit phonemes (in particular /b/, /d/, /g/ an...

متن کامل

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

Performance of discriminatively trained auditory features on Aurora2 and Aurora3

ABSTRACT The design of acoustic models involves two main tasks: feature extraction and data modeling; and hidden Markov modeling (HMM) is commonly used in contemporary automatic speech recognition. In the past, discriminative training has been applied successfully to refine HMM parameters that are initially trained by EM algorithm. Recently, we applied discriminative training in the feature ext...

متن کامل

Bio-inspired Multi-layer Spiking Neural Network Extracts Discriminative Features from Speech Signals

Spiking neural networks (SNNs) enable power-efficient implementations due to their sparse, spike-based coding scheme. This paper develops a bio-inspired SNN that uses unsupervised learning to extract discriminative features from speech signals, which can subsequently be used in a classifier. The architecture consists of a spiking convolutional/pooling layer followed by a fully connected spiking...

متن کامل

Performance of Discriminatively Tra Aurora2 and Aur

The design of acoustic models involves two main tasks: feature extraction and data modeling; and hidden Markov modeling (HMM) is commonly used in contemporary automatic speech recognition. In the past, discriminative training has been applied successfully to refine HMM parameters that are initially trained by EM algorithm. Recently, we applied discriminative training in the feature extraction p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002